

ADVANCING STERILITY ASSURANCE THROUGH SCIENCE, TECHNOLOGY AND INNOVATION

Study on the Impact of EO Concentration on Product Residuals

EXECUTIVE SUMMARY

A study (Protocol # IS210-TI-006) was carried out to compare the impact, if any, of EO concentration on product EO residual levels determined in accordance with ISO10993-7. Product samples were provided by a major medical device manufacturer for evaluation in the study. Samples of three device types were exposed two cycles with identical parameters with the only exception being one had a calculated EO concentration of 600mg/l and the other was 300mg/l.

Samples were retrieved immediately after the sterilizer primary aeration phase and stored appropriately in frozen conditions to prevent any further aeration while awaiting EO residual testing. The samples were extracted in H₂O for 24 hours at 37°C and tested for EO residuals. One of the devices contained multiple materials so each material in this product was tested separately.

INTRODUCTION

The purpose of this study is to investigate the impact of EO concentration during the EO exposure phase of a sterilization cycle on the EO residuals remaining on the product on completion of the cycle.

REFERENCE DOCUMENTS

ISO11135:2014	Sterilization of health-care products Ethylene oxide Requirements for the development, validation and routine control of a sterilization process for medical devices
ISO10993-7:2008	Biological evaluation of medical devices - Part 7: Ethylene oxide sterilization residuals
IS210 -TI-006	Trial Cycle Instruction – Phase 1: EO Residuals by EO Concentration

MATERIALS & METHODS

Two EO cycles were performed as per Table 1, using the same dunnage load to minimize processing variables. The dunnage load included six pallets of bulk-packed disposable polypropylene syringes and two pallets of PVC tubing devices to fill an eight-pallet sterilization chamber. The load was allowed to aerate for 3 days at 30°C +/- 5°C between cycles to eliminate the carry-over of residues from one run to the next.

Samples of medical devices were provided by a leading device manufacturer for placement on each cycle and subsequent testing for residuals. The samples of each device were placed in triplicate in each cycle. They were placed in the same carton on top of pallet one of the dunnage load (PP syringes). The test samples comprise

- Device 1: Suction device comprising of rigid PVC
- Device 2: Auxiliary tubing comprising of soft PVC
- Device 3: Enteral feeding set comprising of PVC tubing, polypropylene spike connector and PVC welded bag

On completion of primary aeration, the load was removed from the process and samples retrieved from the load. The samples were frozen to approximately -18°C within 30 mins of cycle completion to halt further aeration pending testing.

DISCLAIMER

Please note, this was a very limited study involving a select number of polymeric materials and a single EO process with varying EO concentrations. Further investigative work is required to arrive at a generic conclusion that may be applied to medical devices in general.

ADVANCING STERILITY ASSURANCE THROUGH SCIENCE, TECHNOLOGY AND INNOVATION

Table 1: CYCLE PARAMETERS @ 300 mg/l & 600 mg/l EO Concentration

STAGE	PHASE	PARAMETER	SET POINT AT 300 mg/l	SET POINT AT 600 mg/l	
Pre-	Cell	Temperature	50 °C	50 °C	
Conditioning		Relative Humidity	60%	60%	
		Dwell Time	8 hours	8 hours	
	Cell to Chamber	Transfer Time	N/A	N/A	
Exposure	Vacuum	Evacuate to:	100 mbar	100 mbar	
		Time	N/A	N/A	
		Chamber Temperature Outside Initial Vacuum and EO Dwell	50 °C	50 °C	
	Leak Test	Pressure Increment	0 mbar	0 mbar	
		Stabilization Time	1 min	1 min	
		Dwell Time	7 min	7 min	
	N ₂ Flush	Pressure	600 mbar	600 mbar	
		Time	N/A	N/A	
	Re-evacuation	Evacuate to:	100 mbar	100 mbar	
		Time	N/A	N/A	
	Conditioning	Repeats	4	4	
	Steam Injection	Pressure	140 mbar	140 mbar	
		Time	N/A	N/A	
		Dwell Time	12 min	12 min	
	Vacuum	Evacuate to:	110 mbar	110 mbar	
		Time	N/A	N/A	
	EO Gas Injection	Pressure	293 mbar	476 mbar	
		Time	N/A	N/A	
		Gas Supply Temperature	N/A	N/A	
		Chamber Temperature	50 °C	50 °C	
	EO Gas Dwell	Chamber Temperature	50 °C	50 °C	
		Dwell Time	180 min	180 min	
	1st Post-Exposure Vacuum	Pressure	100 mbar	100 mbar	
		Time	N/A	N/A	
	Steam / Nitrogen Washes	Repeats	10	10	
	Steam Injection	Pressure	125 mbar	125 mbar	
		Time	N/A	N/A	
	Nitrogen Injection	Pressure	200 mbar A	200 mbar A	
		Time	N/A	N/A	
	Vacuum	Pressure	100 mbar A	100 mbar A	
		Time	N/A	N/A	
	Air Washes	Repeats	2	2	
	Air Injection	Pressure	600 mbar A	600 mbar A	
		Time	N/A	N/A	
	Vacuum	Pressure	100 mbar A	100 mbar A	
		Time	N/A	N/A	
	Final Air Admission	Pressure	Atmospheric	Atmospheric	
		Time	N/A	N/A	
	Chamber to Cell	Transfer Time	N/A	N/A	
Degassing	Primary Cell	Temperature	50 °C	50 °C	
		Time	8 hours	8 hours	

ADVANCING STERILITY ASSURANCE THROUGH SCIENCE, TECHNOLOGY AND INNOVATION

Residuals testing was performed using cut up and immersion extraction into water at 37°C for 24 hours in accordance with ISO10993-7.

Device 1: Entire product Device 2: A 30cm sample was taken from the middle of the tube for testing as a representative sample portion Device 3a: A 30cm sample was taken from the middle of the tube for testing as a representative sample portion Device 3b: The entire bag Device 3c: The entire spike

Testing was performed using Gas Chromatography validated for testing of EO residuals in accordance with ISO10993-7. Detection was via an FID detector at 300°C. The concentration of EO and ethylene chlorohydrin (ECH) were calculated from the resultant data generated.

RESULTS: COMPARISON OF EO RESIDUAL OUTCOMES

The following tables summarize the results of the different levels of EO concentration on the product EO residual outcomes.

Device 1 - Rigid PVC Yankauer

	600mg/l cycle		00mg/l cycle 300 mg/l cycle		
Sample	EO (ppm)	EO (mg/device)	EO (ppm)	EO (mg/device)	% Reduction
1	358.81	3.62	123.72	1.25	
2	360.02	3.64	126.80	1.28	
3	364.98	3.72	134.89	1.35	
Average	361.27	3.66	128.47	1.29	64%

Device 2 - Soft PVC Auxiliary Tubing

	600mg/l cycle		300 mg/l cycle		
Sample	EO (ppm)	EO (mg/device)	EO (ppm)	EO (mg/device)	% Reduction
1	1555.01	30.98	632.77	12.67	
2	1379.84	26.87	636.09	12.67	
3	1893.07	37.10	798.62	16.38	
Average	1609.31	31.65	689.16	13.91	57%

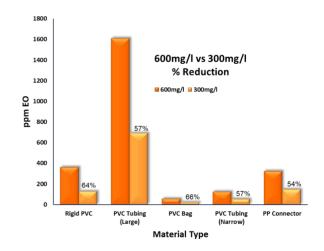
Device 3a – PVC Bag

	600mg/l cycle		300 mg/l cycle		
Sample	EO (ppm)	EO (mg/device)	EO (ppm)	EO (mg/device)	% Reduction
1	62.21	1.44	19.96	0.46	
2	61.53	1.38	19.95	0.46	
3	48.69	1.11	18.72	0.43	
Average	57.48	1.31	19.54	0.45	66%

ADVANCING STERILITY ASSURANCE THROUGH SCIENCE, TECHNOLOGY AND INNOVATION

Device 3b – PVC Tubing

	600mg/l cycle		600mg/l cycle 300 mg/l cycle		
Sample	EO (ppm)	EO (mg/device)	EO (ppm)	EO (mg/device)	% Reduction
1	215.60	0.47	69.37	0.16	
2	78.88	0.18	40.12	0.09	
3	82.81	0.18	51.15	0.12	
Average	125.76	0.28	53.55	0.12	57%


Device 3c – PP Spike Connector

	600mg/l cycle		600mg/l cycle 300 mg/l cycle		
Sample	EO (ppm)	EO (mg/device)	EO (ppm)	EO (mg/device)	% Reduction
1	336.73	0.62	159.50	0.29	
2	332.78	0.61	138.25	0.25	
3	300.99	0.55	144.63	0.26	
Average	323.50	0.59	147.46	0.27	54%

DISCUSSION

From the results of this limited study, it can be seen that a 50% reduction in EO concentration resulted in an associated reduction in EO residual levels on the materials used in the products tested within the study. In the case of PVC, both rigid and soft grades, the resulting reduction in product residuals was greater than 50%.

It can be concluded from this study that reducing EO concentration in an EO cycle will result in lower residuals on product, which in turn could result in shorter aeration times to meet the limits set out in ISO10993-7: 2008.

Authors:

Keith Beaumont, Validation Manager (BSc) Brian McEvoy, Senior Director, Global Technologies (MBA, BSc) Richard Cowman, Technical Director-Global EO, (BA, Dip. Applied Biology)

Page 4 of 4

